The point estimate of the population standard deviation for the random sample 5, 8, 10, 7, 10, 14 is: |
1.5 4.9 3.1 9 |
3.1 |
The correct answer is Option (3) → 3.1 Given sample: $5, 8, 10, 7, 10, 14$, $n = 6$ Step 1: Compute sample mean: $\bar{x} = \frac{5 + 8 + 10 + 7 + 10 + 14}{6} = \frac{54}{6} = 9$ Step 2: Compute sample variance: $s^2 = \frac{\sum (x_i - \bar{x})^2}{n-1}$ $(5-9)^2 = 16$, $(8-9)^2 = 1$, $(10-9)^2 = 1$, $(7-9)^2 = 4$, $(10-9)^2 =1$, $(14-9)^2=25$ Sum = 16+1+1+4+1+25 = 48 $s^2 = \frac{48}{6-1} = \frac{48}{5} = 9.6$ Step 3: Sample standard deviation: $s = \sqrt{9.6} \approx 3.098$ |