Target Exam

CUET

Subject

-- Mathematics - Section B1

Chapter

Relations and Functions

Question:

If \(f(x)=\log_{e}(x+\sqrt{1+x^{2}})\) then \(f^{-1}(x)\) is equal to

Options:

\(\frac{e^{x}-e^{-x}}{2}\)

\(\frac{e^{x}+e^{-x}}{2}\)

\(\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}\)

\(\frac{e^{x}+e^{-x}}{e^{x}-e^{-x}}\)

Correct Answer:

\(\frac{e^{x}-e^{-x}}{2}\)

Explanation:

\(y=\log_e(x+\sqrt{1+x^2})\)

so $e^y=x+\sqrt{1+x^2}$  ...(1)

as it is an odd function

$e^{-y}-x+\sqrt{1+x^2}$  ...(2)

so eq(1) - eq(2)

$e^y-e^{-y}=2x$

so $\frac{e^y-e^{-y}}{2}$

so $f^{-1}(x)=\frac{e^x-e^{-x}}{2}$