If $x +\frac{1}{x}=\sqrt{13}$, then one of the values of $x^3 -\frac{1}{x^3}$ is : |
$4\sqrt{11}$ 32 $4\sqrt{13}$ 36 |
36 |
If $x +\frac{1}{x}=\sqrt{13}$, then one of the values of $x^3 -\frac{1}{x^3}$ is = ? We know that, If x + \(\frac{1}{x}\) = n then, x - \(\frac{1}{x}\) = \(\sqrt {n^2 - 4}\) and we also know that, If x - \(\frac{1}{x}\) = n then, $x^3 -\frac{1}{x^3}$ = n3 + 3 × n x - \(\frac{1}{x}\) = \(\sqrt {\sqrt{13}^2 - 4}\) = 3 Then, $x^3 -\frac{1}{x^3}$ = 33 + 3 × 3 $x^3 -\frac{1}{x^3}$ = 27 + 9 = 36 |