Target Exam

CUET

Subject

General Test

Chapter

Quantitative Reasoning

Topic

Algebra

Question:

If $x +\frac{1}{x}=\sqrt{13}$, then one of the values of $x^3 -\frac{1}{x^3}$ is :

Options:

$4\sqrt{11}$

32

$4\sqrt{13}$

36

Correct Answer:

36

Explanation:

If $x +\frac{1}{x}=\sqrt{13}$,

then one of the values of $x^3 -\frac{1}{x^3}$ is = ?

We know that,

If x + \(\frac{1}{x}\)  = n

then, x - \(\frac{1}{x}\)  = \(\sqrt {n^2 - 4}\)

and we also know that,

If x - \(\frac{1}{x}\)  = n

then, $x^3 -\frac{1}{x^3}$ = n3 + 3 × n

x - \(\frac{1}{x}\) = \(\sqrt {\sqrt{13}^2 - 4}\) = 3

Then, $x^3 -\frac{1}{x^3}$ = 33 + 3 × 3

$x^3 -\frac{1}{x^3}$ = 27 + 9 = 36