Target Exam

CUET

Subject

-- Mathematics - Section A

Chapter

Indefinite Integration

Question:

The value of $\sqrt{2} \int \frac{\sin x}{\sin \left(x-\frac{\pi}{4}\right)} d x$, is

Options:

$x+\log \left|\sin \left(x-\frac{\pi}{4}\right)\right|+C$

$x-\log \left|\cos \left(x-\frac{\pi}{4}\right)\right|+C$

$x+\log \left|\cos \left(x-\frac{\pi}{4}\right)\right|+C$

$x-\log \left|\sin \left(x-\frac{\pi}{4}\right)\right|+C$

Correct Answer:

$x+\log \left|\sin \left(x-\frac{\pi}{4}\right)\right|+C$

Explanation:

We have,

$\sqrt{2} \int \frac{\sin x}{\sin \left(x-\frac{\pi}{4}\right)} d x$

$=\sqrt{2} \int \frac{\sin \left\{\left(x-\frac{\pi}{4}\right)+\frac{\pi}{4}\right\}}{\sin \left(x-\frac{\pi}{4}\right)} d x$

$=\sqrt{2} \int \frac{\sin \left(x-\frac{\pi}{4}\right) \cos \frac{\pi}{4}+\cos \left(x-\frac{\pi}{4}\right) \sin \frac{\pi}{4}}{\sin \left(x-\frac{\pi}{4}\right)} d x$

$=\int 1 . d x+\int \cot \left(x-\frac{\pi}{4}\right) d x=x+\log \left|\sin \left(x-\frac{\pi}{4}\right)\right|+C$