The value of $\sqrt{2} \int \frac{\sin x}{\sin \left(x-\frac{\pi}{4}\right)} d x$, is |
$x+\log \left|\sin \left(x-\frac{\pi}{4}\right)\right|+C$ $x-\log \left|\cos \left(x-\frac{\pi}{4}\right)\right|+C$ $x+\log \left|\cos \left(x-\frac{\pi}{4}\right)\right|+C$ $x-\log \left|\sin \left(x-\frac{\pi}{4}\right)\right|+C$ |
$x+\log \left|\sin \left(x-\frac{\pi}{4}\right)\right|+C$ |
We have, $\sqrt{2} \int \frac{\sin x}{\sin \left(x-\frac{\pi}{4}\right)} d x$ $=\sqrt{2} \int \frac{\sin \left\{\left(x-\frac{\pi}{4}\right)+\frac{\pi}{4}\right\}}{\sin \left(x-\frac{\pi}{4}\right)} d x$ $=\sqrt{2} \int \frac{\sin \left(x-\frac{\pi}{4}\right) \cos \frac{\pi}{4}+\cos \left(x-\frac{\pi}{4}\right) \sin \frac{\pi}{4}}{\sin \left(x-\frac{\pi}{4}\right)} d x$ $=\int 1 . d x+\int \cot \left(x-\frac{\pi}{4}\right) d x=x+\log \left|\sin \left(x-\frac{\pi}{4}\right)\right|+C$ |