CUET Preparation Today
CUET
-- Mathematics - Section B1
Determinants
If A, B and C denote the angles of a triangle, then Δ=|−1cosCcosBcosC−1cosAcosBcosA−2| is independent of |
A B C none of these |
B |
Multiplying C1 by a and then applying C1→C1+bC2+cC3, we get Δ=1a|−a+bcosC+ccosBcosCcosBacosC−b−ccosA−1cosAacosB+bcosA−2ccosA−2| ⇒Δ=1a|0cosCcosB0−1cosA−ccosA−2| ⇒Δ=−ca(cosCcosA+cosB) ⇒Δ=−casinCsinA, which is independent of B. |