Empty space present in FCC is |
74% 26% 68% 32% |
26% |
The correct answer is option 2. 26%.
Let \(a\) be the edge length of the given unit cell. Then from \(\Delta AC\), applying Pythagoras theorem, \((AC)^2 = (AD)^2 + (DC)^2\) or, \(b^2 = a^2 + a^2\) Let \(r\) be the radius of the sphere, then the length of the face diagonal, \((b) = r + 2r + r = 4r\) Applying the value in the above equation, we get, \((4r)^2 = a^2 + a^2\) or, \(16r^2 = 2a^2\) or, \(a^2 = \frac{16}{2}r^2\) or, \(a = \sqrt{8r^2}\) or, \(a = 2\sqrt{2}r\) Therefore, volume of the cube is \(a^3 = (2\sqrt{2}r)^3 = 16\sqrt{2}r^3\) We know volume of the sphere \(= \frac{4}{3}\pi r^3\) Total number of particles in a fcc unit cell \(= 4\) Therefore, \(\text{Packing fraction = }\frac{\text{Total volume of the sphere}}{\text{Volume of the cube}} \times 100\) or, \(\text{Packing fraction = }\frac{4 \times \frac{4}{3}\pi r^3}{16\sqrt{2}r^3} \times 100\) or, \(\text{Packing fraction = } \frac{\frac{16}{3}\pi }{16\sqrt{2}r^3} \times 100\) or, \(\text{Packing fraction = } \frac{\pi }{3\sqrt{2}} \times 100\) or, \(\text{Packing fraction } \approx 74\%\) Thus, empty space in fcc unit cell \(= (100 -74)\% = 26%\) |