Statement-1: If $\vec a$ and $\vec b$ are unit vectors inclined at an angle θ and $\hat α$ is a unit vector bisecting the angle between them, then, $\hat α=\frac{\vec a+\vec b}{2\cos θ/2}$ Statement-2: If ΔPQR is an isosceles triangle with PQ = PR = 1, then the vector representing the bisector of angle P is $\frac{\vec{PQ}+\vec{PR}}{2}$. |
Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. Statement-1 is True, Statement-2 is True; Statement-2 is not a correct explanation for Statement-1. Statement-1 is True, Statement-2 is False. Statement-1 is False, Statement-2 is True. |
Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. |
Let S be the mid-point of QR. Then, PS is bisector of angle P. Let the position vectors of P, Q and R are $\vec a,\vec b$ and $\vec c$ respectively. Then, the position vectors of S is $\frac{(\vec b+\vec c)}{2}$. $∴\vec{PS}=\frac{\vec b+\vec c}{2}-\vec as$ $⇒\vec{PS}=\frac{(\vec b-\vec a)+(\vec c-\vec a)}{2}=\frac{\vec{PQ}+\vec{PR}}{2}$ So, statement-2 is true. The unit vector along $\vec{PS}$ is $\frac{\vec{PS}}{|\vec{PS}|}=\frac{\vec{PQ}+\vec{PR}}{|\vec{PQ}+\vec{PR}|}$ ∴ Unit vector bisecting the angle between unit vectors $\vec a$ and $\vec b$ is $\frac{\vec a+\vec b}{|\vec a+\vec b|}$ Now, $|\vec a+\vec b|^2=|\vec a|^2+|\vec b|^2+2(\vec a.\vec b)$ $⇒|\vec a+\vec b|^2=|\vec a|^2+|\vec b|^2+2|\vec a||\vec b|\cos θ$ $⇒|\vec a+\vec b|^2=1+1+2\cos θ=4\cos^2\frac{θ}{2}$ $⇒|\vec a+\vec b|=2\cos \frac{θ}{2}$ ∴ Unit vector bisecting the angle between $\vec a$ and $\vec b$ is $\frac{\vec a+\vec b}{2\cos \frac{θ}{2}}$ Hence, both the statements are true and statement-2 is a correct explanation of statement-1. |