The acute angle that the vector $2\hat i-2\hat j +\hat k$ makes with the plane determined by the vectors $2\hat i+ 3\hat j-\hat k$ and $\hat i-\hat j+2\hat k$ is |
$\cos^{-1}(\frac{1}{\sqrt{3}})$ $\sin^{-1}(\frac{1}{\sqrt{3}})$ $\tan^{-1}(\sqrt{2})$ $\cot^{-1}(\sqrt{3})$ |
$\sin^{-1}(\frac{1}{\sqrt{3}})$ |
Let $\vec a=2\hat i -2\hat j+\hat k, \vec b=2\hat i+3\hat j-\hat k$ and $\hat c=\hat i-\hat j+2\hat k$. Let $\vec n$ be the normal to the plane. Then, $\vec n=\vec b×\vec c$. Required angle θ is given by $\sin θ=\frac{(\vec b×\vec c).\vec a}{|\vec b×\vec c||\vec a|}$ Now, $\vec b×\vec c=\begin{vmatrix}\hat i&\hat j&\hat k\\2&3&-1\\1&-1&2\end{vmatrix}=5\hat i-5\hat j-5\hat k$ $∴(\vec b×\vec c)=\vec a=(5\hat i-5\hat j-5\hat k).(2\hat i -2\hat j+\hat k)=15$ $|\vec b×\vec c|=\sqrt{25+25+25}=5\sqrt{3}$ and, $|\vec a|=3$ Hence, $\sin θ=\frac{(\vec b×\vec c).\vec a}{|\vec b×\vec c||\vec a|}$ $⇒\sin θ=\frac{15}{15\sqrt{3}}=\frac{1}{\sqrt{3}}⇒θ=\sin^{-1}(\frac{1}{\sqrt{3}})$ |