From a point 12 m above the water level, the angle of elevation of the top of a hill is 60° and the angle of depression of the base of the hill is 30°. What is the height (in m)of the hill? |
36 $48\sqrt{3}$ 48 $36\sqrt{3}$ |
48 |
⇒ In triangle PQT ⇒ tan\({30}^\circ\) = \(\frac{PQ}{QT}\) ⇒ \(\frac{1}{√3}\) = \(\frac{12}{QT}\) ⇒ QT = 12\(\sqrt {3 }\) We know that, QT = PS and PQ = ST ⇒ In triangle PRS ⇒ tan\({60}^\circ\) = \(\frac{RS}{PS}\) ⇒ \(\sqrt {3 }\) = \(\frac{RS}{12√3}\) ⇒ RS = 12\(\sqrt {3 }\) x \(\sqrt {3 }\) = 36 ⇒ RT = RS + ST = 36 + 12 = 48m. |