Find the range of $f(x) = \frac{1}{2\cos x−1}$. |
$(-∞,-\frac{1}{3}]∪[-1,-∞)$ $(-∞,-\frac{1}{3}]∪[1,∞)$ $(∞,\frac{1}{3}]∪[-1,-∞)$ $(-∞,\frac{1}{3}]∪[-1,0)$ |
$(-∞,-\frac{1}{3}]∪[1,∞)$ |
$-1≤ \cos x ≤ 1$ or $-2 ≤ 2 \cos x ≤2$ or $-3≤2 \cos x-1≤1$ For $\frac{1}{2\cos x−1}$, $-3≤2 \cos x-1<0$ or $0<2\cos x - 1 ≤1$ i.e., $-∞<\frac{1}{2\cos x-1}≤\frac{-1}{3}$ or $1≤\frac{1}{2\cos x- 1}<∞$ Hence, the range is $(-∞,-\frac{1}{3}]∪[1,∞)$ |