The ratio of the diameter and height of the right circular cylinder is 4 : 3. If the diameter of the cylinder is reduced by 25%, then its total surface area is reduced to $318.5π\, m^2$. What is the circumference of the base of the cylinder? |
$7π\, m^2$ $14π\, m^2$ $25π\, m^2$ $28π\, m^2$ |
$28π\, m^2$ |
The correct answer is Option (4) → $28π\, m^2$ Let the original diameter be $d$ and height $h$. Given: $\frac{d}{h} = \frac{4}{3} \Rightarrow h = \frac{3}{4}d$ Total Surface Area (TSA) of a cylinder: $TSA = \pi d h + \pi \cdot \left(\frac{d}{2}\right)^2 \cdot 2 = \pi d h + \pi \cdot \frac{d^2}{2}$ $= \pi d h + \frac{\pi d^2}{2}$ Substitute $h = \frac{3}{4}d$: $TSA = \pi d \cdot \frac{3}{4}d + \frac{\pi d^2}{2} = \pi d^2 \left(\frac{3}{4} + \frac{1}{2}\right) = \pi d^2 \cdot \frac{5}{4}$ New diameter after 25% reduction = $0.75d$ New height remains $h = \frac{3}{4}d$ New TSA = $\pi \cdot 0.75d \cdot \frac{3}{4}d + \frac{\pi}{2} \cdot (0.75d)^2$ $= \pi d^2 \cdot \left(\frac{9}{16} + \frac{9}{32}\right) = \pi d^2 \cdot \frac{27}{32}$ New TSA is given as $318.5\pi$: $\pi d^2 \cdot \frac{27}{32} = 318.5\pi$ $d^2 = \frac{318.5 \cdot 32}{27} = \frac{10192}{27}$ $d = \sqrt{\frac{10192}{27}} = 28$ Circumference = $\pi d = \pi \cdot 28 = {28\pi}$ |