Light of frequency $8.27 × 10^{14} Hz$ is incident on a metal surface. Electrons with a maximum speed of $6.6 × 10^5 m/s$ are ejected from the surface. The threshold frequency for photoemission of electrons will be (Given: $h= 6.6 × 10^{-34} Js$ and mass of electron = $9 × 10^{-31} kg$) |
$5.30 × 10^{14} Hz$ $4.74 × 10^{14} Hz$ $3.84 × 10^{14} Hz$ $5.94 × 10^{14} Hz$ |
$5.30 × 10^{14} Hz$ |
The correct answer is Option (1) → $5.30 × 10^{14} Hz$ Given data: Frequency of incident light: $f = 8.27 \times 10^{14} \, Hz$ Maximum speed of photoelectrons: $v = 6.6 \times 10^{5} \, m/s$ Planck’s constant: $h = 6.6 \times 10^{-34} \, Js$ Mass of electron: $m = 9 \times 10^{-31} \, kg$ Photoelectric equation: $hf = hf_0 + K_{max}$ $f_0 = f - \frac{K_{max}}{h}$ Kinetic energy: $K_{max} = \frac{1}{2}mv^2$ $K_{max} = \frac{1}{2}(9 \times 10^{-31})(6.6 \times 10^{5})^2$ $K_{max} = 0.5 \times 9 \times 10^{-31} \times 4.356 \times 10^{11}$ $K_{max} = 1.96 \times 10^{-19} \, J$ Threshold frequency: $f_0 = 8.27 \times 10^{14} - \frac{1.96 \times 10^{-19}}{6.6 \times 10^{-34}}$ $f_0 = 8.27 \times 10^{14} - 2.97 \times 10^{14}$ $f_0 = 5.3 \times 10^{14} \, Hz$ Final Answer: $f_0 = 5.3 \times 10^{14} \, Hz$ |