Rolle's theorem holds for the function $f(x)=x^3+ax^2+\beta x, 1≤x≤2$ at the point $\frac{4}{3}$, the values of $\alpha $ and $\beta $ are : |
$\alpha=5, \beta =-8$ $\alpha=-5, \beta =-8$ $\alpha=8, \beta =-5$ $\alpha=-5, \beta =8$ |
$\alpha=-5, \beta =8$ |
The correct answer is option (4) → $\alpha=-5, \beta =8$ $f(x)=x^3+\alpha x^2+\beta x$ $f'(x)=3x^2+2\alpha x+\beta =0$ (By rolle's theorom) at $\frac{4}{3}$ ⇒ $\frac{16}{3}+\frac{2\alpha x4}{3}+\beta =0$ $⇒16+8α+3β=0$ ...(1) also $f(1)=f(2)$ $⇒1+α+β=8+4α+2β$ so $3α+β+7=0$ ...(2) eq. (1) - 3 eq. (2) $16+8α+3β=0-(21+9α+3=0)$ $α=-5⇒β=8$ |