The general solution of the differential equation $\frac{dy}{dx}+y\tan x=\sec x$ |
$y\sec x- \tan x = c$, where c is an arbitary constant $y\sec x+\tan x = c$, where c is an arbitary constant $y\tan x-\sec x = c$, where c is an arbitary constant $y\tan x + \sec x = c$, where c is an arbitary constant |
$y\sec x- \tan x = c$, where c is an arbitary constant |
The correct answer is Option (1) → $y\sec x- \tan x = c$, where c is an arbitary constant Given: $\displaystyle \frac{dy}{dx} + y \tan x = \sec x$ It is linear: $\displaystyle \frac{dy}{dx} + P(x)y = Q(x)$ $P(x) = \tan x$, $Q(x) = \sec x$ I.F. $= e^{\int \tan x\,dx} = e^{-\ln|\cos x|} = \frac{1}{\cos x} = \sec x$ Using the formula: $y \cdot \text{I.F.} = \int Q \cdot \text{I.F.} \, dx + C$ $\Rightarrow y \sec x = \int \sec x \cdot \sec x\, dx + C = \int \sec^2 x\, dx + C$ $\Rightarrow y \sec x = \tan x + C$ |