For $x> 0$, the minimum value of $\frac{x}{\log_e x}$ is |
$\frac{1}{e}$ $2e$ $e$ $\frac{2}{e}$ |
$e$ |
The correct answer is Option (3) → $e$ Given: $x > 0$ Objective: Minimize the expression $\frac{x}{\log_e x}$ Let $f(x) = \frac{x}{\log_e x}$ Using calculus to find the minimum. Let $f(x) = \frac{x}{\ln x}$ Differentiate using quotient rule: $f'(x) = \frac{\ln x \cdot 1 - x \cdot \frac{1}{x}}{(\ln x)^2}$ $= \frac{\ln x - 1}{(\ln x)^2}$ Set $f'(x) = 0$: $\ln x - 1 = 0$ $\ln x = 1$ $x = e$ Check the second derivative to confirm minimum: $f''(x) = \frac{[(\ln x)^2 \cdot \frac{1}{x}] - [2(\ln x)(\ln x - 1) \cdot \frac{1}{x}]}{(\ln x)^4}$ At $x = e$, $\ln x = 1$ Denominator is positive, numerator becomes positive ⇒ $f''(x) > 0$ So, $x = e$ is a point of minimum. Minimum value = $\frac{e}{\ln e} = \frac{e}{1} = e$ |