The maximum value of the function $f(x) = x^2(60-x)$ in [20, 80] is: |
16000 32000 64000 128000 |
32000 |
The correct answer is Option (2) → 32000 Given: $f(x) = x^2 (60 - x) = 60x^2 - x^3$ Derivative: $f'(x) = 120x - 3x^2 = 3x(40 - x)$ Set $f'(x) = 0 \Rightarrow x = 0 \text{ or } x = 40$ Check interval $[20,80]$: critical point $x = 40$ and endpoints $x = 20, 80$ Compute $f(x)$: $f(20) = 20^2 (60-20) = 400*40 = 16000$ $f(40) = 40^2 (60-40) = 1600*20 = 32000$ $f(80) = 80^2 (60-80) = 6400*(-20) = -128000$ Maximum value: $f_{\max} = 32000$ at $x=40$ |