Relation R on the set $A= \{1, 2, 3,....., 13, 14\}$ defined as $R= \{(x, y): 3x-y=0\}$ is: |
Reflexive, symmetric and transitive Reflexive and transitive but not symmetric Neither reflexive nor symmetric but transitive Neither reflexive nor symmetric nor transitive |
Neither reflexive nor symmetric nor transitive |
The correct answer is Option (4) → Neither reflexive nor symmetric nor transitive $R= \{(x, y): 3x-y=0\}$ $⇒y=3x$ Check Reflexivity, $(x,x)∈R$ $⇒3x-x=0⇒2x=0$ which is only true for $x=0$, but $0∉A$ Check Symmetry, $(1,3)∈R⇒3=3(1)$ But, $(3,1)∉R$ ∴ Not symmetric Check transitivity, $(x,y)∈R$ and $(y,z)∈R$ $⇒3x=y$ and $3y=z$ But, $(x,z)∉R$ ∴ Not transitivity |