Carbon, silicon and germanium have four valence electrons each. Their valence and conduction bands are separated by energy gap Eg. If we represent $Eg_{(c)}, Eg_{(si)}$ and $Eg_{(ge)}$ as their repective energy gaps, then which of the following is true |
$(Eg)_c = (Eg)_{si} = (Eg)_{ge}$ $(Eg)_c > (Eg)_{si} > (Eg)_{ge}$ $(Eg)_c < (Eg)_{si} < (Eg)_{ge}$ $(Eg)_c > (Eg)_{ge} > (Eg)_{si}$ |
$(Eg)_c > (Eg)_{si} > (Eg)_{ge}$ |
The correct answer is Option (2) → $(Eg)_c > (Eg)_{si} > (Eg)_{ge}$ Given: Elements: Carbon (C), Silicon (Si), Germanium (Ge) All have 4 valence electrons, but energy gaps differ: Energy gap: $E_g$(C) > $E_g$(Si) > $E_g$(Ge) Reasoning:
Correct relation: $E_g(\text{C}) > E_g(\text{Si}) > E_g(\text{Ge})$ |