The value of the integral $\int\limits^{\frac{\pi}{2}}_{-\frac{\pi}{2}}cos^2x\, dx $ is: |
$\frac{\pi}{4}$ $\frac{\pi}{2}$ 0 $-\frac{\pi}{2}$ |
$\frac{\pi}{2}$ |
The correct answer is Option (2) → $\frac{\pi}{2}$ $I=\int\limits^{\frac{\pi}{2}}_{-\frac{\pi}{2}}\cos^2x\, dx$ $\cos^2x$ → even function $I=2\int\limits^{\frac{\pi}{2}}_{0}\cos^2x\, dx=2\int\limits^{\frac{\pi}{2}}_{0}\frac{\cos 2x+1}{2}dx$ $I=\left[\frac{\sin 2x}{2}+x\right]^{\frac{\pi}{2}}_{0}$ $=\frac{\pi}{2}$ |