If $\sin ^2 \theta-\cos ^2 \theta-3 \sin \theta+2=0,0^{\circ}<\theta<90^{\circ}$, then what is the value of $\frac{1}{\sqrt{\sec \theta-\tan \theta}}$ is: |
$\sqrt[4]{3}$ $\sqrt[2]{2}$ $\sqrt[2]{3}$ $\sqrt[4]{2}$ |
$\sqrt[4]{3}$ |
We are given that :- sin²θ - cos²θ - 3sinθ + 2 = 0 { using , sin²θ + cos²θ = 1 } sin²θ - (1 - sin²θ) - 3sinθ + 2 = 0 2sin²θ - 3sinθ + 1 = 0 2sin²θ - 2sinθ - sinθ + 1 = 0 2sinθ ( sinθ - 1 ) - 1 ( sinθ - 1 ) = 0 ( 2sinθ - 1 ).( sinθ - 1 ) = 0 Either ( 2sinθ - 1 ) = 0 or ( sinθ - 1 ) = 0 ( sinθ - 1 ) = 0 is not possible because 0º < θ < 90º So, 2sinθ - 1 = 0 sinθ = \(\frac{1}{2}\) { We know, sin30º = \(\frac{1}{2}\) } So, θ = 30º Now, \(\frac{1}{ \sqrt { secθ - tanθ }\}\) = \(\frac{1}{ \sqrt { sec 30º - tan 30º }\}\) = \(\frac{1}{ \sqrt { 2/√3 - 1/ √3}\}\) = \(\frac{1}{ \sqrt { 1/ √3}\}\)' = $\sqrt[4]{3}$ |