Target Exam

CUET

Subject

General Test

Chapter

Quantitative Reasoning

Topic

Trigonometry

Question:

If $\sin ^2 \theta-\cos ^2 \theta-3 \sin \theta+2=0,0^{\circ}<\theta<90^{\circ}$, then what is the value of $\frac{1}{\sqrt{\sec \theta-\tan \theta}}$ is:

Options:

$\sqrt[4]{3}$

$\sqrt[2]{2}$

$\sqrt[2]{3}$

$\sqrt[4]{2}$

Correct Answer:

$\sqrt[4]{3}$

Explanation:

We are given  that :-

sin²θ - cos²θ - 3sinθ + 2 = 0

{ using , sin²θ + cos²θ = 1 }

sin²θ - (1 - sin²θ)  - 3sinθ + 2 = 0

2sin²θ  - 3sinθ + 1 = 0

2sin²θ  - 2sinθ - sinθ + 1 = 0

2sinθ ( sinθ - 1 ) - 1 ( sinθ - 1 ) = 0

( 2sinθ - 1 ).( sinθ - 1 ) = 0

Either ( 2sinθ - 1 ) = 0 or ( sinθ - 1 ) = 0 

( sinθ - 1 ) = 0  is not possible because  0º < θ < 90º 

So,  2sinθ - 1 = 0

sinθ = \(\frac{1}{2}\)

{ We know, sin30º = \(\frac{1}{2}\) }

So, θ = 30º

Now,

\(\frac{1}{ \sqrt { secθ - tanθ }\}\)

= \(\frac{1}{ \sqrt { sec 30º - tan 30º }\}\)

= \(\frac{1}{ \sqrt { 2/√3 - 1/ √3}\}\)

= \(\frac{1}{ \sqrt { 1/ √3}\}\)'

= $\sqrt[4]{3}$