In a square PQRS, diagonals PR and QS intersects at O. The angle bisector of ∠RPQ meets QS and QR at T and U respectively. OT : RU is equals to ? |
1 : 2 2 : 1 1 : \(\sqrt {2}\) \(\sqrt {2}\) : 1 |
1 : 2 |
Let side PQ = a So diagonal PR = \(\sqrt {2}\)a ⇒ OP = OQ = OR = OS = \(\frac{PR}{2}\) = \(\frac{a}{\sqrt {2}}\) .........(1) Now, in ΔPOQ and from angle bisector theorem PQ : PO = QT : OT a = \(\frac{a}{\sqrt {2}}\) = QT : OT \(\frac{\sqrt {2}}{1}\) = \(\frac{QT}{OT}\) Let QT = \(\sqrt {2}\)b and OT = b ..........(2) QT + OT = OQ = \(\frac{a}{\sqrt {2}}\) [from (1)] \(\sqrt {2}\) b + b = \(\frac{a}{\sqrt {2}}\) ⇒ b = \(\frac{a}{\sqrt {2}\left(\sqrt {2} +1\right)}\) OT = \(\frac{a}{\sqrt {2}\left(\sqrt {2} +1\right)}\) ..........(3) Now, in ΔPQR and from angle bisector theorem PQ : PR = QU : RU a : \(\sqrt {2}\)a = QU : UR 1 : \(\sqrt {2}\) = QU : UR at QU = c, UR = \(\sqrt {2}\)c .........(4) Let QU + RU = QR = d c + \(\sqrt {2}\)c = d c = \(\frac{d}{\sqrt {2}+1}\) ⇒ \(\sqrt {2}\)c = \(\frac{\sqrt {2}d}{\sqrt {2}}\) ..........(5) Now from (3) and (5) OT : RU = \(\frac{a}{\sqrt {2}\left(\sqrt {2} +1\right)}\) : \(\frac{\sqrt {2}a}{\sqrt {2}+1}\) = \(\frac{1}{\sqrt {2}}\) : \(\frac{\sqrt {2}}{1}\) = 1 : 2 |