In the fig. shown CP represents the plane wave front and AO and BP, the corresponding two rays. Find the condition on θ for constructive interference at P between the ray BP and reflected ray OP |
$\cos \theta=\frac{3 \lambda}{2 d}$ $\cos \theta=\frac{\lambda}{4 d}$ $\sec \theta-\cos \theta=\frac{\lambda}{4 d}$ $\sec \theta-\cos \theta=\frac{4 \lambda}{d}$ |
$\cos \theta=\frac{\lambda}{4 d}$ |
$PN = d, P O=d \sec \theta$ $CO = PO \cos 2 \theta=d \sec \theta \cos 2 \theta$ Path difference = CO + PO = $d \sec \theta+d \sec \theta \cos 2 \theta$ $=d \sec \theta(1+\cos 2 \theta)=\frac{d}{\cos \theta} \times 2 \cos ^2 \theta=2 d \cos \theta$ The ray AO is incident on denser medium, so reflected ray suffers a phase difference of $\pi$ or a path differences of $\frac{\lambda}{2}$ ∴ Effective path difference $\Delta=2 d \cos \theta+\frac{\lambda}{2}$ For constructive interference path difference $\Delta=n \lambda$. $\Rightarrow 2 d \cos \theta+\frac{\lambda}{2}=n \lambda$ or $2 d \cos \theta=(2 n-1) \frac{\lambda}{2}$ |