Target Exam

CUET

Subject

General Test

Chapter

Quantitative Reasoning

Topic

Trigonometry

Question:

If (a2 - b2) sin θ + 2ab cos θ = a2 + b2, then find value of cos θ + cot θ

Options:

\(\frac{4a^3b}{a^4 - b^4}\)

\(\frac{2a^3b}{a^4 - b^4}\)

\(\frac{4a^3b}{a^4 + b^4}\)

\(\frac{4ab^3}{a^4 - b^4}\)

Correct Answer:

\(\frac{4a^3b}{a^4 - b^4}\)

Explanation:

(By property : sin2θ + cos2θ = 1, while a sin θ + b cos θ = c and a2 + b2 = c2, then sin θ = \(\frac{a}{c}\) and cos θ = \(\frac{b}{c}\)

 

(a2 - b2) sin θ + 2ab cos θ = a2 + b2

where, (a2 - b2)2 + (2ab)2 = (a2 + b2) , therefore

 ⇒ sin θ = \(\frac{(a^2 - b^2)}{a^2 + b^2}\),    cos θ = \(\frac{2ab}{a^2 + b^2}\)

cos θ + cot θ = cosθ + \(\frac{cosθ}{sinθ}\)

                    =\(\frac{2ab}{a^2 + b^2}\) + \(\frac{2ab}{a^2 - b^2}\)

                    = \(\frac{2a^3b + 2a^3b}{a^4 - b^4}\)

                    = \(\frac{4a^3b}{a^4 - b^4}\)