Target Exam

CUET

Subject

-- Mathematics - Section B1

Chapter

Indefinite Integration

Question:

If $\int\frac{\sin^2x}{1+\sin^2x}dx=x-k\tan^{-1}(M\tan x)+C$, then;

Options:

$M=\frac{1}{\sqrt{2}}$

$K=\frac{1}{\sqrt{2}}$

$M=\frac{-1}{\sqrt{2}}$

$K=\frac{-1}{\sqrt{2}}$

Correct Answer:

$K=\frac{1}{\sqrt{2}}$

Explanation:

$I=\int\frac{\sin^2x}{1+\sin^2x}dx=\int(1-\frac{1}{1+\sin^2x})dx=\int(1-\frac{\sec^2x}{1+2\tan^2x})dx=x-\frac{1}{\sqrt{2}}\tan^{-1}(\sqrt{2}\tan x) + C$