If $f(x)=(1+x)^n$ then the value of $f(0)+f'(0)+\frac{f''(0)}{2 !}+....+\frac{1}{n !} f^n(0)$ is : |
n 2n 2n-1 None of these |
2n |
$f(0)=1, f'(x)=n(1+x)^{n-1}, $ $f''(x)=n(n-1)(1+x)^{n-2},......,$ $f^{(n)}(x)=n(n-1) ..... 1=n!$ $\Rightarrow f'(0)=n, f''(0)=n(n-1), ....., f^n(0)=n!$ ∴ Given expression = $1+\frac{n}{1}+\frac{n(n-1)}{2 !}+.....+\frac{n !}{n !}$ $={ }^n C_0+{ }^n C_1+{ }^n C_2+.....+{ }^n C_n=2^n$ Hence (2) is correct answer. |