Let $A=\{1,2,3\}$. Consider the relation $R=\{(1,1),(2,2), (3,3), (1,2),(2,3), (1,3)\}$. Then R is |
reflexive only reflexive and transitive symmetric and transitive neither symmetric nor transitive |
reflexive and transitive |
$A=\{1,2,3\}$ all $(1,1),(2,2), (3,3)∈R$ ⇒ R is reflexive for $(1,2)∈R(2,1)∉R$ ⇒ R is not symmetric for $(1,2)∈R,(2,3)∈R,(1,3)∈R$ ⇒ R is transitive |