If $f(x)=\int\limits_0^x\left(t^2+2 t+2\right) d t$, where $x \in[2,4]$, then |
the maximum value of f(x) is $\frac{32}{3}$ the minimum value of f(x) is 10 the maximum value of f(x) is 26 none of these |
none of these |
We have, $f(x)=\int\limits_0^x\left(t^2+2 t+2\right) d t$ $\Rightarrow f'(x)=x^2+2 x+2=(x+1)^2+1>0$ for all x ⇒ f(x) is strictly increasing on [2, 4] ∴ Maximum value of f(x) $=f(4)=\int\limits_0^4\left(t^2+2 t+2\right) d t=\left[\frac{t^3}{3}+t^2+2 t\right]_0^4=\frac{136}{3}$ Minimum value of f(x) $=f(2)=\int\limits_0^2\left(t^2+2 t+2\right) d t=\left[\frac{t^3}{3}+t^2+2 t\right]_0^2=\frac{32}{3}$ |