If $x = \sqrt{10} + \sqrt{11}, y = \sqrt{10} - \sqrt{11}, $ then value of $ 7x^2 - 50 xy + 7y^2$ = ____________. |
344 704 1360 386 |
344 |
Formula used, ( a - b )2 = a2 + b2 - 2ab ( a + b )2 = a2 + b2 + 2ab a2 - b2 = (a + b) (a – b) If $x = \sqrt{10} + \sqrt{11}, y = \sqrt{10} - \sqrt{11}, $ then value of $ 7x^2 - 50 xy + 7y^2$ The value of $x = \sqrt{10} + \sqrt{11}$ x2 = (\(\sqrt {10}\))2 + (\(\sqrt {11}\))2 + 2(\(\sqrt {10}\))(\(\sqrt {11}\)) x2 =10 + 11 + 2(\(\sqrt {110}\)) x2 = 21 + 2(\(\sqrt {110}\)) and now the value of y2 will be, y2 = 21 - 2(\(\sqrt {110}\)) and xy = ($\sqrt{11} + \sqrt{10}$)($\sqrt{11} - \sqrt{10}$) = 1 Put these values in the required equation, $ 7x^2 - 50 xy + 7y^2$ = 7(21 + 2(\(\sqrt {110}\))) - 50 (1) + 7(21 - 2(\(\sqrt {110}\))) $ 7x^2 - 50 xy + 7y^2$ = 147 + 14(\(\sqrt {110}\)) + 147 - 14(\(\sqrt {110}\)) + 50 $ 7x^2 - 50 xy + 7y^2$ = 344 |