If A, B and C are angles of a triangle, then the determinant $\begin{vmatrix} -1 & cos C & cos B \\cos C & -1 & cos A\\cosB & cos A& -1\end{vmatrix}$ is equal to : |
0 -1 1 cosAcosBcosC |
0 |
The correct answer is Option (1) → 0 $Δ=\begin{vmatrix} -1 & \cos C & \cos B \\\cos C & -1 & \cos A\\\cos B & \cos A& -1\end{vmatrix}$ $A+B+C=π$ on expanding $Δ=-1+2\cos A\cos B\cos C+\cos^2A+\cos^2B+\cos^2C$ so $2(\cos^2A+\cos^2B+\cos^2C)$ $=3+\cos^2A+\cos^2B+\cos^2C$ $=3+2\cos(A+B)\cos(A-B)+\cos 2C$ $=2+2\cos(π-C)\cos(A-B)+2\cos^2C$ $=2-2\cos C(\cos(A-B)-\cos C)$ $=2-2\cos C(\cos(A-B)+\cos(π-C))$ $2-2\cos C(\cos(A-B)+\cos(A+B))$ $=2-4\cos A\cos B\cos C$ so $Δ=-1+2\cos A\cos B\cos C+1-\cos A\cos B\cos C$ $=0$ |