Integrating factor of the differential equation $x \frac{d y}{d x}-y=3 x^2$ is: |
$-x$ $\frac{1}{x}$ $-\log x$ $e^{-x}$ |
$\frac{1}{x}$ |
The correct answer is Option (2) - $\frac{1}{x}$ Divide equation by (x) $⇒\frac{dy}{dx}-\frac{y}{x}=3x$ $I.F.=e^{\int -\frac{1}{x}dx}=e^{-\log x}=\frac{1}{x}$ |