Given x = cy + bz; y = az + cx; z = bx + ay where x, y, z are not all zero. The value of a2 +b2 +c2 + 2abc is : |
1 0 2 3 |
1 |
− x + cy + bz = 0 cx − y + az = 0 bx + ay − z = 0 since x, y, z are not all zero, using the condition for concurrency $\left|\begin{array}{ccc}-1 & c & b \\ c & -1 & a \\ b & a & -1\end{array}\right|=0 \Rightarrow-1+2 a b c+a^2+b^2+c^2=0$ $\Rightarrow a^2+b^2+c^2+2 a b c=1$ Hence (1) is the correct answer. |