If $f(x)=\left\{\begin{matrix}\frac{\sqrt{4+x}-2}{x}, & if\, x≠0\\k ,& if \, x ≠0\end{matrix}\right.$ is continuous at x=0, then the value of k is : |
0 4 $\frac{1}{4}$ 1 |
$\frac{1}{4}$ |
The correct answer is Option (3) → $\frac{1}{4}$ $f(0)=k$ $\underset{x→0}{\lim}\frac{\sqrt{4+x}-2}{x}\frac{(\sqrt{4+x}+2)}{(\sqrt{4+x}+2)}=\underset{x→0}{\lim}\frac{x}{x(\sqrt{4+x}+2)}$ $=\underset{x→0}{\lim}\frac{1}{\sqrt{4+x}+2}=\frac{1}{4}=k$ |