An element with density 5.03 g cm-3 forms a fcc lattice with edge length of $4.3×10^{-8} cm$. The atomic mass of the element is: |
60.2 u 107.9 u 63 u 109.7 u |
60.2 u |
The correct answer is Option (1) → 60.2 u To determine the atomic mass of the element, we can use the formula for the density of a face-centered cubic (fcc) crystal lattice. The relationship between density, atomic mass, and lattice parameters is given by: \(\rho = \frac{Z \cdot M}{N_A \cdot a^3}\) Where: \(\rho\) is the density of the element (g/cm³), \(Z\) is the number of atoms per unit cell (for an fcc lattice, \(Z = 4\)), \(M\) is the molar mass (atomic mass) of the element (g/mol), \(N_A\) is Avogadro's number (\(6.022 \times 10^{23} \, \text{atoms/mol}\)), \(a\) is the edge length of the unit cell (cm). Given:\ \(\rho = 5.03 \, \text{g/cm}^3\), \(a = 4.3 \times 10^{-8} \, \text{cm}\), \(Z = 4\), \(N_A = 6.022 \times 10^{23} \, \text{atoms/mol}\). \(M = \frac{\rho \cdot N_A \cdot a^3}{Z}\) Now, plugging in the values: \(M = \frac{5.03 \times 6.022 \times 10^{23} \times (4.3 \times 10^{-8})^}{4}\) \(⇒ M \frac{30.29066 \times 10^{23} \times 79.507 \times 10^{-24}}{4}\) \(⇒ M = \frac{2408.31 \times 10^{-1}}{4}\) \(⇒ M =\frac{240.8}{4}\) \(⇒ M \approx 60.2\) |