If $f(x)=a \log |x|+b x^2+x$ has its extremum values at $x=-1$ and $x=2$, then |
$a=2, b=-1$ $a=2, b=-1 / 2$ $a=-2, b=1 / 2$ none of these |
$a=2, b=-1 / 2$ |
We have, $f(x)=a \log |x|+b x^2+x \Rightarrow f^{\prime}(x)=\frac{a}{x}+2 b x+1$ Since f(x) attains its extremum values at x = -1, 2 ∴ $f^{\prime}(-1)=0$ and $f^{\prime}(2)=0$ $\Rightarrow -a-2 b+1=0$ and $\frac{a}{2}+4 b+1=0$ $\Rightarrow a=2$ and $b=-1 / 2$ |