In a right triangle ABC, right angled at B, altitude BD is drawn to the hypotenuse AC of the triangle. If AD = 6 cm, CD = 5 cm, then find the value of $AB^2+ BD^2$ (in cm). |
30 96 36 66 |
96 |
According to the concept, \( {BD }^{2 } \) = AD x DC ⇒ \( {BD }^{2 } \) = 6 x 5 ⇒ \( {BD }^{2 } \) = 30 According to the concept \( {AB }^{2 } \) = AD x AC ⇒ \( {AB }^{2 } \) = 6 x (AD + CD) ⇒ \( {AB }^{2 } \) = 6 x (6 + 5) ⇒ \( {AB }^{2 } \) = 6 x 11 ⇒ \( {AB }^{2 } \) = 66 Now, \( {AB }^{2 } \) + \( {BD }^{2 } \) = 30 + 66 = 96 Therefore, \( {AB }^{2 } \) + \( {BD }^{2 } \) is 96. |