For all x ∈ (0,1). |
$e^x < 1 + x$ $\log_e(1 + x)<x$ $\sin x > x$ $\log_e\, x > x$ |
$\log_e(1 + x)<x$ |
(A) Let $f(x)=e^x-1-x$ $⇒f'(x)=e^x-1>0,∀\,x∈(0,1)$ So, f(x) is increasing, when 0 < x < 1 ⇒ f(x) > f(0) or $e^x-1-x>0⇒e^x-1+x$ (B) Let $g(x)=\log_e(1+x)-x$ $⇒g'(x)=\frac{1}{1+x}-1=\frac{-x}{1+x}<0,∀\,x∈(0,1)$ So, g(x) is decreasing, when 0 < x < 1 $⇒g(0)>g(x)⇒\log_e(1+x)<x$ (C) Let h(x) = sin x - x $⇒h'(x)=\cos x-1<0,∀\,x∈(0,1)$ So, h(x) is decreasing, where 0 < x < 1 ⇒ h(x) < h(0) ∵ sin x < x (D) Let $g(x)=\log_e\,x-x⇒g'(x)=\frac{1}{x}-1$ $∴g'(x)>0,∀\,x∈(0,1)⇒\log_e\,x-x<-1⇒x-1>\log_e\,x$ $⇒x>\log_e\,x$ |