If $\cos \left(2 \theta+54^{\circ}\right)=\sin \theta, 0^{\circ}<\left(2 \theta+54^{\circ}\right)<90^{\circ}$, then what is the value of $\frac{1}{\cot 5 \theta+\sec \frac{5 \theta}{2}} ?$ |
$\frac{\sqrt{3}}{2}$ $\frac{2 \sqrt{3}}{3}$ $\frac{\sqrt{3}}{3}$ $\frac{1}{3}$ |
$\frac{\sqrt{3}}{3}$ |
We are given :- cos (2θ + 54º) = sinθ { using, Iff A + B = 90º , then sinA = cosB } So, 2θ + 54º + θ= 90º 3θ = 36º θ = 12º Now, \(\frac{1}{ cot5θ + sec5θ/2}\) = \(\frac{1}{ cot60º + sec30º }\) = \(\frac{1}{ 1/√3 + 2/√3 }\) = \(\frac{√3}{ 3 }\) |