In any triangle, if the angles are in the ratio 1 : 2 : 3, then what will be the ratio of the sides opposite to them? |
$1 : \sqrt{3} : 1$ $1 : \sqrt{3} : 2$ $ 2 : 2 : \sqrt{3}$ $2 : \sqrt{3} : 1$ |
$1 : \sqrt{3} : 2$ |
Formula to be used here, \(\frac{a}{sin A}\) = \(\frac{b}{sin B}\) = \(\frac{c}{sin C}\) ⇒ Let A = p, B = 2p, C = 3p ⇒ \(\angle\)A + \(\angle\)B + \(\angle\)C = \({180}^\circ\) ⇒ p + 2p + 3p = \({180}^\circ\) ⇒ 6p = \({180}^\circ\) ⇒ p = \({30}^\circ\) \(\angle\)A = \({30}^\circ\), \(\angle\)B = \({60}^\circ\), \(\angle\)C = \({90}^\circ\) Now, \(\frac{a}{sin 30}\) = \(\frac{b}{sin 60}\) = \(\frac{c}{sin 90}\) ⇒ a = 1, b = \(\sqrt {3 }\), C = 2, ⇒ The ratio a, b and c = 1 : \(\sqrt {3 }\) : 2. |