A spherical conducting shell of inner radius $r_1$ and outer radius $r_2$ has a charge Q. A charge q is placed at the centre of the shell. The surface charge density on outer surface of the shell is: |
$\frac{Q+q}{4πr_2^2}$ $\frac{Q-q}{4πr_2^2}$ $\frac{Q+q}{4π(r_2^2-r_1^2)}$ $\frac{Q-q}{4π(r_2^2-r_1^2)}$ |
$\frac{Q+q}{4πr_2^2}$ |
The correct answer is Option (1) → $\frac{Q+q}{4πr_2^2}$ Given, The spherical shell has an inner radius $r_1$ and $r_2$ → Charge Q placed on the shell → Charge q placed on the centre $∴Q_{outer}=Q+q$ Surface charge density, $σ=\frac{Q_{outer}}{Area\,of\,outer\,surface}$ $=\frac{Q+q}{4πr_2^2}$ |