If $y = (x+1)(x^2 + 1)(x^4 + 1)(x^8 + 1)$ then $\frac{dy}{dx}$ at $x=-1$ is |
8 -8 16 -16 |
8 |
The correct answer is Option (1) → 8 Given: $y = (x+1)(x^2+1)(x^4+1)(x^8+1)$ Use product rule to find $\frac{dy}{dx}$ and evaluate at $x = -1$ Let:
$A = x+1$ Then $y = A \cdot B \cdot C \cdot D$ Differentiate using product rule: $\frac{dy}{dx} = A'BCD + AB'CD + ABC'D + ABCD'$ Now compute each derivative: $A' = 1$ $B' = 2x$ $C' = 4x^3$ $D' = 8x^7$ At $x = -1$: $A = 0$, $B = 2$, $C = 2$, $D = 2$ So $A'BCD = 1 \cdot 2 \cdot 2 \cdot 2 = 8$ All other terms have factor $A = 0$ ⟹ they become 0 Answer: 8 |