Interval in which the function $f(x) =2x^3-3x^2-12x+10 $ is decreasing is : |
$(-∞, -1]$ $(-∞, -1]∪[2, ∞)$ $[-1, 2]$ $[2, ∞)$ |
$[-1, 2]$ |
The correct answer is option (3) → $[-1, 2]$ $f(x) =2x^3-3x^2-12x+10$ $f'(x) =6x^2-6x-12=0$ $x^2-x-2=0$ $(x-2)(x+1)=0⇒x=-1,2$ wavy curve method f is decreasing in [-1, 2] |