Function $f(x) =\tan^{–1} (\sin x + \cos x)$ is monotonic increasing when |
$x < 0$ $x > 0$ $0 < x<\frac{π}{2}$ $0 < x<\frac{π}{4}$ |
$0 < x<\frac{π}{4}$ |
$f'(x)=\frac{\cos x-\sin x}{1+(\sin x+\cos x)^2}$ $f(x)$ is monotonic increasing when $f'(x)>0$ $⇒\frac{\cos x-\sin x}{1+(\sin x+\cos x)^2}>0⇒\cos x-\sin x>0$ $⇒\sqrt{2}\cos(x+\frac{π}{4})>0$ $⇒\frac{-π}{2}<x+\frac{π}{4}<\frac{π}{2}$ (∵ $\cos θ$ is positive when $\frac{-π}{2}<θ<\frac{π}{2}$) |