The particular solution of the differential equation $x(1+ y^2)dx-y(1 + x^2)dy = 0,y(0)=1$, is |
$xy^2 = x^2 + 1$ $y^2 = 2x^2+1$ $y^2 = 2x^2 + xy + 1$ $x^2=3y^2+2xy + 1$ |
$y^2 = 2x^2+1$ |
The correct answer is Option (2) → $y^2 = 2x^2+1$ Given differential equation: $x(1+y^2)dx - y(1+x^2)dy = 0$ Rewrite: $\frac{dy}{dx} = \frac{x(1+y^2)}{y(1+x^2)} = \frac{x}{y} \cdot \frac{1+y^2}{1+x^2}$ Separate variables: $\frac{y}{1+y^2} dy = \frac{x}{1+x^2} dx$ Integrate both sides: $\int \frac{y}{1+y^2} dy = \int \frac{x}{1+x^2} dx$ LHS: $\frac{1}{2} \ln(1+y^2)$, RHS: $\frac{1}{2} \ln(1+x^2)$ So: $\ln(1+y^2) = \ln(1+x^2) + C$ → $1+y^2 = K (1+x^2)$ Apply initial condition $y(0)=1$: $1 + 1^2 = K (1 + 0^2) \Rightarrow 2 = K \Rightarrow K = 2$ Particular solution: $1 + y^2 = 2 (1 + x^2) \Rightarrow y^2 = 2(1+x^2) - 1 = 1 + 2x^2$ $y = \sqrt{1 + 2x^2}$ |