Target Exam

CUET

Subject

-- Mathematics - Section B1

Chapter

Inverse Trigonometric Functions

Question:

If $ \sum\limits^{n}_{r=1}cos^{-1}x_r = 0 $, then $\sum\limits^{n}_{r=1} x_r $ equals

Options:

0

n

$\frac{n(n+1)}{2}$

none of these

Correct Answer:

n

Explanation:

We know that

$0 ≤ cos^{-1} x_r ≤\pi ; r = 1, 2, ....., n $

$ ∴\sum\limits^{n}_{r=1}cos^{-1}x_r = 0 $

$⇒ cos^{-1} x_r = 0 $ for r = 1, 2, .....,n

$⇒ x_r = 1 $ for r =1, 2, ....n

$∴\sum\limits^{n}_{r=1} x_r = \sum\limits^{n}_{r=1} 1 = n $