If $\vec a = 3\hat i-6\hat j +\hat k$ and $\vec b = 2\hat i-4\hat j+λ\hat k$ are such that $\vec a||\vec b$, then $3λ + 2 =$ |
0 2 4 6 |
4 |
The correct answer is Option (3) → 4 Given vectors: \(\vec{a} = 3\hat{i} - 6\hat{j} + \hat{k}\) \(\vec{b} = 2\hat{i} - 4\hat{j} + \lambda \hat{k}\) Since \(\vec{a} \parallel \vec{b}\), there exists a scalar \(k\) such that: \(\vec{b} = k \vec{a}\) Equate components: \[ \begin{cases} 2 = 3k \\ -4 = -6k \\ \lambda = k \end{cases} \] From first equation: \(k = \frac{2}{3}\) From second equation: \(-4 = -6k \Rightarrow k = \frac{4}{6} = \frac{2}{3}\) Both equal \(k = \frac{2}{3}\), consistent. From third equation: \(\lambda = k = \frac{2}{3}\) Calculate \(3\lambda + 2\): \[ 3 \times \frac{2}{3} + 2 = 2 + 2 = 4 \] |