The value of C, in Rolle's theorem for the function $f(x) =e^x \, sin x,$ when $x \in [0, \pi ]$ is : |
$\frac{\pi }{6}$ $\frac{\pi }{4}$ $\frac{\pi }{2}$ $\frac{3\pi}{4}$ |
$\frac{3\pi}{4}$ |
The correct answer is option (4) → $\frac{3\pi }{4}$ $f(x) =e^x\sin x$ $f'(x)=e^x(\sin x+\cos x)=0$ $⇒-\sin x=\cos x⇒x=\frac{3\pi}{4}$ so $C=\frac{3\pi}{4}$ |