Let $f(x)=[x]$ and $g(x)=|x|.$ Then gof $(\frac{-5}{3})-fog(\frac{-5}{3})$ where [x] is greatest integer valued function and [x] is modulus function. |
0 1 3 -10 |
1 |
The correct answer is Option (2) → 1 $gof (\frac{-5}{3})-fog(\frac{-5}{3})$ so $g([\frac{-5}{3}])-f(|\frac{-5}{3}|)$ $=g(-2)-f(\frac{5}{3})$ $=|-2|-[\frac{5}{3}]=2-1=1$ |