Two circles intersect each other such that each passes through the centre of other. Radius of these circles are equal. If the length of common chord is $14\sqrt{14}$ cm, then what will be the sum of circumference of these circles ? |
88 cm 352 cm 176 cm 188 cm |
176 cm |
Let the radius be r cm. According to the diagram, XP = PY = 7\(\sqrt {3 }\) OO' = r Again O'X = OX = r (radius) \(\angle\)XPO = \({90}^\circ\) O'P = PO = \(\frac{r}{2}\) \( { XO'}^{2 } \) = \( { O'P}^{2 } \) + \( { AP}^{2 } \) \( { r}^{2 } \) = \( { r/2}^{2 } \) + \( { 7√3}^{2 } \) ⇒ \( { r}^{2 } \) = \( { r/4}^{2 } \) + 147 ⇒ \( { 3r/4}^{2 } \) = 147 ⇒ r = 7 x 2 = 14 cm, Circumference of the two circles = 2 x 2 x \(\frac{22}{7}\) x 14 ⇒ 176 cm. |