The set of all $x$ for which $\log (1+x) \leq x$, is |
$(0, \infty)$ $(-1, \infty)$ $(-1,0)$ none of these |
$(-1, \infty)$ |
Let $f(x)=\log (1+x)-x$ Clearly, f(x) is defined for all x > -1. Now, $f(x)=\log (1+x)-x$ $\Rightarrow f'(x)=\frac{1}{1+x}-1=-\frac{x}{1+x}$ $\Rightarrow f'(x)<0$ for $x>0$ and $f'(x)>0$ for $-1<x<0$ $\Rightarrow f(x) \leq f(0)$ for $-1<x<\infty$ $\Rightarrow \log (1+x)-x \leq 0$ for $-1<x<\infty$ $\Rightarrow \log (1+x) \leq x$ for $x \in(-1, \infty)$ |