If $R=\{(x, y): x, y \in Z, x^2+y^2 \leq 4\}$ is a relation in Z, then domain of R is |
{0, 1, 2} {–2, –1, 0} {–2, –1, 0, 1, 2} None of these |
{–2, –1, 0, 1, 2} |
We have $R=\left\{(x, y): x, y \in Z, x^2+y^2 \leq 4\right\}$ Let x = 0 ∴ $x^2+y^2 \leq 4 \Rightarrow y^2 \leq 4 \Rightarrow y=0, \pm 1, \pm 2$ Let $x= \pm 2 ∴ x^2+y^2 \leq 4 \Rightarrow y^2 \leq 0 \Rightarrow y=0$ ∴ R = $\{(0,0),(0,-1),(0,1),(0,-2),(0,2),(-1,0),(1,0),(1,1),(1,-1),(-1,1),(-1,-1),(2,0),(-2,0)\}$ ∴ Domain of R = $\{x:(x, y) \in R\}=\{0,-1,1,-2,2\}$ Hence (3) is the correct answer. |